3.48 \(\int \frac {a+b \text {csch}^{-1}(c x)}{d+e x} \, dx\)

Optimal. Leaf size=215 \[ \frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {\left (e-\sqrt {c^2 d^2+e^2}\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )}{e}+\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {\left (\sqrt {c^2 d^2+e^2}+e\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )}{e}-\frac {\log \left (1-e^{2 \text {csch}^{-1}(c x)}\right ) \left (a+b \text {csch}^{-1}(c x)\right )}{e}+\frac {b \text {Li}_2\left (\frac {\left (e-\sqrt {c^2 d^2+e^2}\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )}{e}+\frac {b \text {Li}_2\left (\frac {\left (e+\sqrt {c^2 d^2+e^2}\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )}{e}-\frac {b \text {Li}_2\left (e^{2 \text {csch}^{-1}(c x)}\right )}{2 e} \]

[Out]

-(a+b*arccsch(c*x))*ln(1-(1/c/x+(1+1/c^2/x^2)^(1/2))^2)/e+(a+b*arccsch(c*x))*ln(1-(1/c/x+(1+1/c^2/x^2)^(1/2))*
(e-(c^2*d^2+e^2)^(1/2))/c/d)/e+(a+b*arccsch(c*x))*ln(1-(1/c/x+(1+1/c^2/x^2)^(1/2))*(e+(c^2*d^2+e^2)^(1/2))/c/d
)/e-1/2*b*polylog(2,(1/c/x+(1+1/c^2/x^2)^(1/2))^2)/e+b*polylog(2,(1/c/x+(1+1/c^2/x^2)^(1/2))*(e-(c^2*d^2+e^2)^
(1/2))/c/d)/e+b*polylog(2,(1/c/x+(1+1/c^2/x^2)^(1/2))*(e+(c^2*d^2+e^2)^(1/2))/c/d)/e

________________________________________________________________________________________

Rubi [A]  time = 0.39, antiderivative size = 215, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 2, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {6289, 2518} \[ \frac {b \text {PolyLog}\left (2,\frac {\left (e-\sqrt {c^2 d^2+e^2}\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )}{e}+\frac {b \text {PolyLog}\left (2,\frac {\left (\sqrt {c^2 d^2+e^2}+e\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )}{e}-\frac {b \text {PolyLog}\left (2,e^{2 \text {csch}^{-1}(c x)}\right )}{2 e}+\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {\left (e-\sqrt {c^2 d^2+e^2}\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )}{e}+\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {\left (\sqrt {c^2 d^2+e^2}+e\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )}{e}-\frac {\log \left (1-e^{2 \text {csch}^{-1}(c x)}\right ) \left (a+b \text {csch}^{-1}(c x)\right )}{e} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCsch[c*x])/(d + e*x),x]

[Out]

((a + b*ArcCsch[c*x])*Log[1 - ((e - Sqrt[c^2*d^2 + e^2])*E^ArcCsch[c*x])/(c*d)])/e + ((a + b*ArcCsch[c*x])*Log
[1 - ((e + Sqrt[c^2*d^2 + e^2])*E^ArcCsch[c*x])/(c*d)])/e - ((a + b*ArcCsch[c*x])*Log[1 - E^(2*ArcCsch[c*x])])
/e + (b*PolyLog[2, ((e - Sqrt[c^2*d^2 + e^2])*E^ArcCsch[c*x])/(c*d)])/e + (b*PolyLog[2, ((e + Sqrt[c^2*d^2 + e
^2])*E^ArcCsch[c*x])/(c*d)])/e - (b*PolyLog[2, E^(2*ArcCsch[c*x])])/(2*e)

Rule 2518

Int[Log[v_]*(u_), x_Symbol] :> With[{w = DerivativeDivides[v, u*(1 - v), x]}, Simp[w*PolyLog[2, 1 - v], x] /;
 !FalseQ[w]]

Rule 6289

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[((a + b*ArcCsch[c*x])*Log[1 -
((e - Sqrt[c^2*d^2 + e^2])*E^ArcCsch[c*x])/(c*d)])/e, x] + (Dist[b/(c*e), Int[Log[1 - ((e - Sqrt[c^2*d^2 + e^2
])*E^ArcCsch[c*x])/(c*d)]/(x^2*Sqrt[1 + 1/(c^2*x^2)]), x], x] + Dist[b/(c*e), Int[Log[1 - ((e + Sqrt[c^2*d^2 +
 e^2])*E^ArcCsch[c*x])/(c*d)]/(x^2*Sqrt[1 + 1/(c^2*x^2)]), x], x] - Dist[b/(c*e), Int[Log[1 - E^(2*ArcCsch[c*x
])]/(x^2*Sqrt[1 + 1/(c^2*x^2)]), x], x] + Simp[((a + b*ArcCsch[c*x])*Log[1 - ((e + Sqrt[c^2*d^2 + e^2])*E^ArcC
sch[c*x])/(c*d)])/e, x] - Simp[((a + b*ArcCsch[c*x])*Log[1 - E^(2*ArcCsch[c*x])])/e, x]) /; FreeQ[{a, b, c, d,
 e}, x]

Rubi steps

\begin {align*} \int \frac {a+b \text {csch}^{-1}(c x)}{d+e x} \, dx &=\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {\left (e-\sqrt {c^2 d^2+e^2}\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )}{e}+\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {\left (e+\sqrt {c^2 d^2+e^2}\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )}{e}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-e^{2 \text {csch}^{-1}(c x)}\right )}{e}+\frac {b \int \frac {\log \left (1-\frac {\left (e-\sqrt {c^2 d^2+e^2}\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )}{\sqrt {1+\frac {1}{c^2 x^2}} x^2} \, dx}{c e}+\frac {b \int \frac {\log \left (1-\frac {\left (e+\sqrt {c^2 d^2+e^2}\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )}{\sqrt {1+\frac {1}{c^2 x^2}} x^2} \, dx}{c e}-\frac {b \int \frac {\log \left (1-e^{2 \text {csch}^{-1}(c x)}\right )}{\sqrt {1+\frac {1}{c^2 x^2}} x^2} \, dx}{c e}\\ &=\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {\left (e-\sqrt {c^2 d^2+e^2}\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )}{e}+\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {\left (e+\sqrt {c^2 d^2+e^2}\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )}{e}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-e^{2 \text {csch}^{-1}(c x)}\right )}{e}+\frac {b \text {Li}_2\left (\frac {\left (e-\sqrt {c^2 d^2+e^2}\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )}{e}+\frac {b \text {Li}_2\left (\frac {\left (e+\sqrt {c^2 d^2+e^2}\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )}{e}-\frac {b \text {Li}_2\left (e^{2 \text {csch}^{-1}(c x)}\right )}{2 e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.66, size = 506, normalized size = 2.35 \[ \frac {a \log (d+e x)}{e}+\frac {b \left (8 \text {Li}_2\left (\frac {\left (e-\sqrt {c^2 d^2+e^2}\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )+8 \text {Li}_2\left (\frac {\left (e+\sqrt {c^2 d^2+e^2}\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )+8 \text {csch}^{-1}(c x) \log \left (\frac {\left (\sqrt {c^2 d^2+e^2}-e\right ) e^{\text {csch}^{-1}(c x)}}{c d}+1\right )+8 \text {csch}^{-1}(c x) \log \left (1-\frac {\left (\sqrt {c^2 d^2+e^2}+e\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )+4 i \pi \log \left (\frac {\left (\sqrt {c^2 d^2+e^2}-e\right ) e^{\text {csch}^{-1}(c x)}}{c d}+1\right )+4 i \pi \log \left (1-\frac {\left (\sqrt {c^2 d^2+e^2}+e\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )+16 i \sin ^{-1}\left (\frac {\sqrt {1+\frac {i e}{c d}}}{\sqrt {2}}\right ) \log \left (\frac {\left (\sqrt {c^2 d^2+e^2}-e\right ) e^{\text {csch}^{-1}(c x)}}{c d}+1\right )-16 i \sin ^{-1}\left (\frac {\sqrt {1+\frac {i e}{c d}}}{\sqrt {2}}\right ) \log \left (1-\frac {\left (\sqrt {c^2 d^2+e^2}+e\right ) e^{\text {csch}^{-1}(c x)}}{c d}\right )-32 \sin ^{-1}\left (\frac {\sqrt {1+\frac {i e}{c d}}}{\sqrt {2}}\right ) \tan ^{-1}\left (\frac {(e+i c d) \cot \left (\frac {1}{4} \left (\pi +2 i \text {csch}^{-1}(c x)\right )\right )}{\sqrt {c^2 d^2+e^2}}\right )+4 \text {Li}_2\left (e^{-2 \text {csch}^{-1}(c x)}\right )-8 \text {csch}^{-1}(c x)^2-4 i \pi \text {csch}^{-1}(c x)-8 \text {csch}^{-1}(c x) \log \left (1-e^{-2 \text {csch}^{-1}(c x)}\right )-4 i \pi \log \left (\frac {d}{x}+e\right )+\pi ^2\right )}{8 e} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcCsch[c*x])/(d + e*x),x]

[Out]

(a*Log[d + e*x])/e + (b*(Pi^2 - (4*I)*Pi*ArcCsch[c*x] - 8*ArcCsch[c*x]^2 - 32*ArcSin[Sqrt[1 + (I*e)/(c*d)]/Sqr
t[2]]*ArcTan[((I*c*d + e)*Cot[(Pi + (2*I)*ArcCsch[c*x])/4])/Sqrt[c^2*d^2 + e^2]] - 8*ArcCsch[c*x]*Log[1 - E^(-
2*ArcCsch[c*x])] + (4*I)*Pi*Log[1 + ((-e + Sqrt[c^2*d^2 + e^2])*E^ArcCsch[c*x])/(c*d)] + 8*ArcCsch[c*x]*Log[1
+ ((-e + Sqrt[c^2*d^2 + e^2])*E^ArcCsch[c*x])/(c*d)] + (16*I)*ArcSin[Sqrt[1 + (I*e)/(c*d)]/Sqrt[2]]*Log[1 + ((
-e + Sqrt[c^2*d^2 + e^2])*E^ArcCsch[c*x])/(c*d)] + (4*I)*Pi*Log[1 - ((e + Sqrt[c^2*d^2 + e^2])*E^ArcCsch[c*x])
/(c*d)] + 8*ArcCsch[c*x]*Log[1 - ((e + Sqrt[c^2*d^2 + e^2])*E^ArcCsch[c*x])/(c*d)] - (16*I)*ArcSin[Sqrt[1 + (I
*e)/(c*d)]/Sqrt[2]]*Log[1 - ((e + Sqrt[c^2*d^2 + e^2])*E^ArcCsch[c*x])/(c*d)] - (4*I)*Pi*Log[e + d/x] + 4*Poly
Log[2, E^(-2*ArcCsch[c*x])] + 8*PolyLog[2, ((e - Sqrt[c^2*d^2 + e^2])*E^ArcCsch[c*x])/(c*d)] + 8*PolyLog[2, ((
e + Sqrt[c^2*d^2 + e^2])*E^ArcCsch[c*x])/(c*d)]))/(8*e)

________________________________________________________________________________________

fricas [F]  time = 0.68, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b \operatorname {arcsch}\left (c x\right ) + a}{e x + d}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/(e*x+d),x, algorithm="fricas")

[Out]

integral((b*arccsch(c*x) + a)/(e*x + d), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {b \operatorname {arcsch}\left (c x\right ) + a}{e x + d}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/(e*x+d),x, algorithm="giac")

[Out]

integrate((b*arccsch(c*x) + a)/(e*x + d), x)

________________________________________________________________________________________

maple [F]  time = 0.49, size = 0, normalized size = 0.00 \[ \int \frac {a +b \,\mathrm {arccsch}\left (c x \right )}{e x +d}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccsch(c*x))/(e*x+d),x)

[Out]

int((a+b*arccsch(c*x))/(e*x+d),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ b \int \frac {\log \left (\sqrt {\frac {1}{c^{2} x^{2}} + 1} + \frac {1}{c x}\right )}{e x + d}\,{d x} + \frac {a \log \left (e x + d\right )}{e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/(e*x+d),x, algorithm="maxima")

[Out]

b*integrate(log(sqrt(1/(c^2*x^2) + 1) + 1/(c*x))/(e*x + d), x) + a*log(e*x + d)/e

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )}{d+e\,x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(1/(c*x)))/(d + e*x),x)

[Out]

int((a + b*asinh(1/(c*x)))/(d + e*x), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a + b \operatorname {acsch}{\left (c x \right )}}{d + e x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acsch(c*x))/(e*x+d),x)

[Out]

Integral((a + b*acsch(c*x))/(d + e*x), x)

________________________________________________________________________________________